Dougherty Valley HS Chemistry - AP Thermodynamics – Entropy and Gibbs 2

Worksheet #3

Name: Period: Seat#:

Directions: Show all work in a way that would earn you credit on the AP Test! This is always the rule! Some answers are provided at the end in italics and underlined. If you need more space, use binder paper and staple to your worksheet.

$$\Delta G^{\circ} = \Sigma \Delta G_f^{\circ} \ products - \Sigma \Delta G_f^{\circ} \ reactants$$

1) Which of the following processes are spontaneous?

a)	Spreading the fragrance of perfume through a room	YES	NO
b)	Separating a mixture of N_2 and O_2 into pure containers of each	YES	NO
c)	Bursting of a normally inflated balloon	YES	NO
d)	Bursting of an overly inflated balloon	YES	NO
e)	The reaction of sodium metal with chlorine gas to form NaCl	YES	NO
f)	The dissolution of NaCl(s) in water form NaCl(aq)	YES	NO

NO

- 2) Consider what happens when the explosive TNT is detonated.
 - a) Is the detonation a spontaneous process? YES
 - b) What is the sign of q for the process?
- 3) The normal boiling point of methanol is 64.7 °C and its molar enthalpy of vaporization is $\Delta H_{vap} = 71.8$ kJ/mol.
 - a) When methanol boils at its normal boiling point, will its entropy increase or decrease?
 - **b)** Calculate the value of Δ S when 1.00 mol of methanol is vaporized at 64.7°C.

- 4) What do you expect the sign of ΔS to be for the following situations?
 - a) In a reaction, 2 moles of gaseous reactants \rightarrow 3 moles gaseous products.
 - b) b. In a chemical reaction, two gases combine to form a solid.

a)	Melting of ice cubes	YES	NO		
b)	Dissolving sugar in a cup of hot coffee	YES	NO		
c)	Formation of methane and oxygen gas from CO ₂ and H ₂ O	YES	NO		
d)	A solid sublimes	YES	NO		
e)	Volume of a gas increases	YES	NO		
a)	each of the following pairs, circle the one with the higher entropy $Ar(I)$ or $Ar(g)$ b) dict the sign of the entropy change of the system for each react $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$	He(g) at 3	atm or He	(g) at 1.5atm	
L\	L P. (OH) (1) 1 P. O(1) 1 H2O(1)			NEGATIVE	POSITIV
IJ)	b. $Ba(OH)_2(s) \rightarrow BaO(s) + H2O(g)$			NEGATIVE	POSITIVI
c)	c. $CO(g) + 2H_2(g) \rightarrow CH3OH(l)$			NEGATIVE	POSITIVI

$$\Delta S^{\circ} = \Sigma \Delta S^{\circ} products - \Sigma \Delta S^{\circ} reactants$$

8) Using S $^{\circ}$ values from an appendix or your reference sheet, calculate Δ S $^{\circ}$ values for each reaction.

a)
$$N_2H_4(g) + H_2(g) \rightarrow 2NH_3(g)$$

<u> 16.4</u>

b)
$$2Al(s) + 3Cl_2(g) \rightarrow 2AlCl_3(s)$$

<u>-507.3</u>

9) For	a certain chemical reaction, ΔH° = -35.4 kJ and ΔS° = -85.5 J/K.		
a)	Is the reaction endothermic or exothermic?		
b)	Does the reaction lead to an increase or decrease in the disorder of the system?		
c)	Calculate ΔG° for the reaction at 298 K.		
-1\	Le the manufaction and attended at 2000K and an attended and distinct 20		<u>-9.921</u>
a)	Is the reaction spontaneous at 298K under standard conditions?		
-	ng data in an appendix or your reference sheet, calculate ΔH° , ΔS° , and ΔG° at 298K g) + F ₂ (g) \rightarrow 2HF(g)	for the reaction	on below.
	Calculate ΔH° , ΔS° , and ΔG° using $\Sigma prod \Sigma reactants$	ΔH°	· =
		ΔS°	=
		ΔG°	· =
b)	Using the ΔH° , ΔS° values you calculated above, show that $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$		
			<u>-550.8</u>
	ng data from an appendix or your reference sheet, calculate the change in Gibbs free ence $2NOCl(g) \rightarrow 2NO(g) + Cl_2(g)$	nergy for the r	eaction.
u,	21(OCI(g) / 21(O(g) CI ₂ (g)		
b)	Is the reaction spontaneous under standard conditions? Explain.		<u>42.4</u>
b)	is the reaction spontaneous under standard conditions? Explain.	YES	NO
			110
	articular reaction is spontaneous at 450 K. The enthalpy change for the reaction is $+34$. clude about the sign and magnitude of Δ S for the reaction?	5 kJ. What ca	n you
00110	Stade about the sign and magnitude of Ao for the redution.		